
CQRS Documents by Greg Young

http://cqrsinfo.com Page 1

Contents
A Stereotypical Architecture ... 2

Application Server ... 2

Client Interaction .. 3

Analysis of the Stereotypical Architecture ... 5

Summary ... 7

Works Cited ... 8

Task Based User Interface ... 9

Commands .. 11

User Interface ... 13

Works Cited ... 16

Command and Query Responsibility Segregation .. 17

Origins ... 17

The Query Side .. 20

The Command Side ... 22

Events as a Storage Mechanism ... 25

What is a Domain Event? .. 25

Other Definitions and Discussion .. 26

Events as a Mechanism for Storage .. 27

There is no Delete ... 31

Performance and Scalability ... 32

Rolling Snapshots .. 33

Impedance Mismatch ... 36

Business Value of the Event Log ... 37

Works Cited ... 40

Building an Event Storage ... 41

Structure ... 41

Operations .. 42

Rolling Snapshots .. 44

Event Storage as a Queue ... 46

CQRS and Event Sourcing .. 50

Cost Analysis ... 51

Integration .. 52

Differences in Work Habits ... 53

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 2

A Stereotypical Architecture
Before moving into architectures for Domain Driven Design based projects it is important to start off by

analyzing what is generally considered to be the standard architecture that many try to apply to

projects. We can from that point attempt to improve upon the stereotypical architecture in small

rational steps while trying to minimize the cost in terms of productivity for each step towards a better

architecture.

Below is shown a diagram of a stereotypical architecture.

Figure 1 A Stereotypical Architecture

Application Server

The above architecture is centered upon a backing data storage system. This system although typically a

RDBMS does not have to be, it could just as easily be a key/value store, and object database, or even

plain XML files. The important aspect of the backing store is that it is representing the current state of

objects in the domain.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 3

Above the backing data storage lies an Application Server. An area of logic, labeled as the domain in

Figure 1 contains the business logic of the system. In this area validation and orchestration logic exists

for the processing of requests given to the Application Server.

It is important to note that although Figure 1 is drawn without a data tier one could place a data tier in

between the Application Server and the Data Storage. It is also important to note that a “domain” is not

necessary to achieve this architecture, one could also use other patterns such as Table Module or

Transaction Script. With these only existing as Application Services.

Abstracting the “domain” one will find a facade known as Application Services. Application Services

provide a simple interface to the domain and underlying data, they also limit coupling between the

consumers of the domain and the domain itself.

On the outside of the Application Server sits some type of Remote Facade. This could be many things

such as SOAP, custom TCP/IP, XML over HTTP, TomCat, or even a person manually typing messages that

arrive tied to the legs of pigeons. The Remote Facade may or may not be abstracted away from its

underlying technology mechanism depending on the situation and tools that are involved.

The overall usage of an Application Server to abstract away the data storage of a system and to provide

a centralized location of business logic has become very popular over the years and at the time of this

writing is in many circumstances considered to be the default architecture applied to many systems.

Client Interaction

Interacting with the Application Server there is a / are many client(s). The general interaction of the

clients can be seen in Figure 2.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 4

Figure 2 Typical Client Interaction

The basic interaction of the client can be described as a DTO (Data Transfer Object) up/down

interaction. Going through the lifecycle of an operation is the easiest way to show the functioning of the

API. A user goes to a screen, perhaps to edit a customer. The client sends a request to the remote

facade for a DTO representing Customer #id. The Remote facade loads up the domain objects required,

and maps the domain objects to a DTO that is then returned to the client. An example of DTO in XML

format can be seen in Figure 3 but the basic explanation is that the DTO in this stereotypical architecture

contains the current state of the object in questions.

The client will then display the information received from the Remote Facade on the screen allowing the

user to interact with it. This is very often done utilizing a view model and/or data binding with the view.

At some point the user will be complete with the editing of the data on the screen and will through

some action cause the UI to “Save” the data. Generally this is implemented through a “Save Button”

although some User Interfaces will instead just have you leave the current data which forces a save.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 5

The process of sav

The processing of a Save on the client will take the data that has been edited by the user on the screen,

pack it back into a DTO (usually identical to the DTO it requested from the Remote Façade for displaying

to the user). It will then send this DTO back up to the Application Server.

The Application Server receiving the DTO will then start a transaction/session, map the DTO back to the

domain objects, allow the domain objects to verify any changes, then save the changes within the

domain objects back to the data storage likely through the use of something like an Object Relational

Mapper that has the ability to distinguish what has changed in the domain objects and update the data

storage accordingly. The Application Server will return to the client either an Acknowledgement (Ack)

that the change has been persisted or it will return a series of errors as to why it was unable to persist

the changes.

Analysis of the Stereotypical Architecture

The architecture provided above as with any architecture has many properties. Some of these

properties are good under certain scenarios and other properties can be extremely bad in others. As

architects we should really be trying to align many of these properties to best fit our needs.

Simplicity

When looking at properties it is important to note what the most likely property is for a given

architecture becoming popular. In the architecture above the most likely property defining its popularity

is that it is simple. One could teach a Junior developer how to interact with a system built using this

architecture in a very short period of time. Going along with the simplicity, the architecture is

completely generic. One could use this architecture on every project. Along with being able to use it on

every project, because many people are doing it, its likely that if a team brings on a new member the

new member will be intimately familiar with the general architecture of their system again lowering on

ramp up costs.

The combination of these two items allows teams to become extremely adept at applying this

architecture and more important it allows them to use it as a default architecture. The thought process

<Contact id=”1234”>

 <Name>Greg Young</Name>

 <Address>

 <Street>111 Some St.</Street>

 <City>Vernon</City>

 <State>CT</State>

 <Zip>06066</Zip>

 <Country>USA</Country>

 </Address>

</Contact>

Figure 3 Example in XML of a DTO

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 6

of needing to align non-functional requirements really goes away as they know that this architecture will

be “good enough” for 80% of the projects that they run into.

Tooling

Many frameworks exist for the optimization of time required to create systems utilizing the architecture

provided above. ORM’s are the largest single example as they provide valuable services such as change

tracking and transaction management with complex object graphs. Other examples would include the

automapping frameworks that map from the domain objects to DTOs on both sides resulting in largely

removing the amount of “plumbing code” required to map the DTOs back and forth in the Application

Server.

Of course there are however also many not-so-good things associated with the architecture provided

above. It being that this document is associated with Domain Driven Design the single most important of

the not-so-good properties would be that it is impossible to apply Domain Driven Design with the

architecture provided.

Domain Driven Design

The application of Domain Driven Design is not possible in the above architecture though many who are

“practicing” Domain Driven Design use this architecture. The reasoning for why it is impossible can easily

be seen when one looks at how the Ubiquitous Language is represented by the object model.

In the architecture above there are only four verbs (and of course synonyms for those four such as edit

instead of update). The four verbs are Create, Read, Update, and Delete or CRUD as they are commonly

known in the industry. Because the Remote Façade has a data oriented interface the Application

Services must necessarily have the same interface.

This means that there are no other verbs within the domain. When however one talks with domain

experts in an effort to refine an Ubiquitous Language, it is extremely rare that one ends up with a

language that is focused on these four verbs.

There is a related well-known anti-pattern of domain modeling known as an “Anemic Model”.

“The basic symptom of an Anemic Domain Model is that at first blush it looks like the real thing. There

are objects, many named after the nouns in the domain space, and these objects are connected with the

rich relationships and structure that true domain models have. The catch comes when you look at the

behavior, and you realize that there is hardly any behavior on these objects, making them little more

than bags of getters and setters. Indeed these models often come with design rules that say that you are

not to put any domain logic into the domain objects. Instead there are a set of service objects which

capture all of the domain logic. These services live on top of the domain model and use the domain

model for data” (Fowler, 2003)

The model that is being built in this architecture sounds at first to be an anemic domain model. Because

the Application Services map data back and forth to DTO’s the domain objects have little behavior and

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 7

are littered with getters and setters to be used in the mapping process. There is a structure to the

domain showing how objects relate with one another but …

One cannot even create and Anemic Domain Model with this architecture as then all of the business

logic would be in services, here the services themselves are really just mapping DTO’s to domain objects,

there is no actual business logic in them. In this case a large amount of business logic is not existing in

the domain at all, nor in the Application Server, it may exist on the client but more likely it exists on

either pieces of paper in a manual or in the heads of the people using the system.

Architectures like the one being viewed tend to come with instructions of how to complete complex

tasks by editing data in many parts of the system. A stereotypical example of this would be when

changing the sex of an employee you must after go edit their health insurance information. This is far

worse than the creation of an anemic model, this is the creation of a glorified excel spreadsheet.

Scaling

When one looks at the architecture provided above in the context of scaling one will quickly notice that

there is a large bottle neck. The bottleneck in terms of scaling is the data storage. When using a RDBMS

as 90%+ currently use this becomes even more of a problem most RDBMS are at this point not

horizontally scalable and vertically scaling becomes prohibitively expensive very quickly. It is however

also extremely important to remember that most systems do not need to scale and as such scalability is

really not a grave issue in all cases.

Summary

The DTO up/down architecture employed on many projects is capable of being used for many

applications and can offer many benefits in terms of simplicity for teams to work with. It cannot

however be used with a Domain Driven Design based project, to attempt so will bring failure to your

efforts at applying Domain Driven Design.

This architecture does however make a good baseline and the rest of this document will be focused on

improving this architecture in incremental steps while attempting to limit or remove cost while adding

business value at each additional step.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 8

Works Cited
Fowler, M. (2003, 11 25). MF Bliki: AnemicDomainModel. Retrieved from Bliki:

http://martinfowler.com/bliki/anemicdomainmodel

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 9

Task Based User Interface
This chapter introduces the concept of a Task Based User Interface and compares it with a CRUD style

user interface. It also shows the changes that occur within the Application Server when a more task

oriented style is applied to it’s API.

One of the largest problems seen in “A Stereotypical Architecture” was that the intent of the user was

lost. Because the client interacted by posting data-centric DTOs back and forth with the Application

Server, the domain was unable to have any verbs in it. The domain had become a glorified abstraction of

the data model. There were no behaviors, the behaviors that existed, existed in the client, on pieces of

paper, or in the heads of the users of the software.

Many examples of such applications can be cited. Users have “work flow” information documented for

them. Go to screen xyz edit foo to bar, then go to this other screen and edit xyz to abc. For many types

of systems this type of workflow is fine. These systems are also generally low value in terms of the

business. In an area that is sufficiently complex and high enough ROI in order to use Domain Driven

Design these types of workflows become unwieldy.

One reason that is commonly cited for wanting to build a system such as described is that “the business

logic and work flows can be changed at any time to anything without need of a change to the software”.

While this may be true it must be asked at what cost. What happens when someone misses a step in

the process they have in their head or you have multiple users who do it differently as is commonly the

case? How do you get any reasonable information out of a system in terms of reporting?

One way of dealing with this issue is to move away from the DTO up/down architecture that was

illustrated in a “Stereotypical Architecture”. Figure 1 shows the client interaction side of a DTO up/down

architecture.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 10

Figure 4 Interaction in a DTO Up/Down Architecture

The basic explanation of the operation is that the UI will request a DTO, say for Customer 1234 from the

Application Server. This DTO will be returned to the client and then shown on the screen. The user will

interact with the DTO in some way (likely either directly or through a View Model). Eventually the client

will click Save or some other trigger will occur and the client will take the DTO and send it back up to the

Application Server. The Application Server will then internally map the data back to the domain model

and save the changes returning a success or failure.

As discussed the intention of the user is being lost because a DTO is being sent up that just represents

the current state of the object after the client’s actions are completed. It is possible to bring forward the

intention of the user; this will allow the Application Server to process behaviors as opposed to saving

data. Figure shows an interaction capturing intent.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 11

Figure 5 Behavioral Interface

Capturing intent the client interaction is very similar to the DTO up/down methodology in terms of

interactions. The client first quests a DTO from the Application Server for instance Customer 1234. The

Application Server returns a DTO representing the customer that is then shown on the screen for the

user to interact with usually either directly or through a View Model. The similarities however stop at

this point.

Instead of simply sending the same DTO back up when the user is completed with their action the client

needs to send a message to the Application Server telling it to do something. It could be to “Complete a

Sale”, “Approve a Purchase Order”, “Submit a Loan Application”. Said simply the client needs to send a

message to the Application Server to have it complete the task that the user would like to complete. By

telling the Application Server what the user would like to do, it is possible to know the intention of the

user.

Commands

The method through which the Application Server will be told what to do is through the use of a

Command. A command is a simple object with a name of an operation and the data required to perform

that operation. Many think of Commands as being Serializable Method Calls. Listing 1 includes the code

of a basic command.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 12

As a side note the example in Listing 1 includes the pattern name after the name of the Command. This is

a decision that has many positives and negatives both linguistically and operationally. The choice over

whether to use a pattern name in a class name is one that should not be taken lightly by a development

team.

One important aspect of Commands is that they are always in the imperative tense; that is they are

telling the Application Server to do something. The linguistics with Commands are important. A situation

could for with a disconnected client where something has already happened such as a sale and could

want to send up a “SaleOccurred” Command object. When analyzing this, is the domain allowed to say

no that this thing did not happen? Placing Commands in the imperative tense linguistically shows that

the Application Server is allowed to reject the Command, if it were not allowed to, it would be an Event

for more information on this see “Events”.

Occasionally there exist funny examples of language in English. A perfect example of this would be

“Purchase” which can be used either as a verb in the imperative or as a noun describing the result of its

usage in the imperative. When dealing with these situations, ensure that the concept being pushed

forward represents the imperative of the verb and not the noun. As an example a purchase should be

including what to purchase and expecting the domain to possibly fill in some information like when the

item was purchased as opposed to sending up a purchase DTO that fully describes the purchase.

The simple Command in Listing 1 includes two data properties. It includes an Id which represents the

InventoryItem it will apply to and it includes a comment as to why the item is being deactivated. The

comment is quite typical of an attribute associated with a Command, it is a piece of data that is required

in order to process the behavior. There should only exist on a Command data points that are required to

process the given behavior. This contrasts greatly with the typical architecture where the entire data of

the object is passed back to the Application Server.

Most importantly of the data is the Id of the associated inventory item. At least one Id must exist for all

commands that are updating state in some way, as all commands are intended to be routed to an

object. When issuing a Create Command it is not necessary though valuable to include an Id. Having the

client originate Ids normally in the form of UUIDs is extremely valuable in distributed systems.

public class DeactivateInventoryItemCommand {

 public readonly Guid InventoryItemId;

 public readononly string Comment;

 public DeactivateInventoryItemCommand (Guid id, string comment) {

 InventoryItemId = id;

 Comment = comment;

}

Listing 1 A Simple Command

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 13

It is quite common for developers to learn about Commands and to very quickly start creating

Commands using vocabulary familiar to them such as “ChangeAddress”, “CreateUser”, or “DeleteClass”.

This should be avoided as a default. Instead a team should be focused on what the use case really is.

 Is it “ChangeAddress”? Is there a difference between “Correcting an Address” and “Relocating the

Customer”? It likely will be if the domain in question is for a telephone company that sends the yellow

pages to a customer when they move to a new location.

Is it “CreateUser” or is it “RegisterUser”? “DeleteClass” or “DeregisterStudent”. This process in naming

can lead to great amounts of domain insight. To begin defining Commands, the best place to begin is in

defining use cases, as generally a Command and a use case align.

It is also important to note that sometimes the only use case that exists for a portion of data is to

“create”, “edit”, “update”, “change”, or “delete” it. All applications carry information that is simply

supporting information. It is important though to not fall into the trap of mistaking places where there

are use cases associated with intent for these CRUD only places.

Commands as a concept are not difficult but are different for many developers. Many developers see

the creation of the Commands as a lot of work. If the creation of Commands is a bottleneck in the

workflow, many of the ideas being discussed are likely being applied in an incorrect location.

User Interface

In order to build up Commands the User Interface will generally work a bit differently than in a DTO

up/down system. Because the UI must build Command objects it needs to be designed in such a way

that the user intent can be derived from the actions of the user.

The way to solve this is to lean more towards a “Task Based User Interface” also known as an “Inductive

User Interface” in the Microsoft world. This style of UI is not by any means new and offers a quite

different perspective on the design of user interfaces. Microsoft identified three major problems with

Deductive UIs when researching Inductive UIs.

Users don't seem to construct an adequate mental model of the product. The interface design for most

current software products assumes that users will understand a conceptual model that the designers

carefully crafted. Unfortunately, most users don't seem to ever acquire a mental model that is thorough

and accurate enough to guide their navigation. These users aren't dumb — they are just very busy and

overloaded with information. They do not have the time, energy, or desire to wonder about a conceptual

model for their software.

Even many long-time users never master common procedures. Designers know that new users may

have trouble at first, but expect these problems to vanish as users learn common tasks. Usability data

indicates this often doesn't happen. In one study, researchers set up automated equipment to videotape

users at home. The tapes showed that users focusing on the task at hand do not necessarily notice the

procedure they are following and do not learn from the experience. The next time users perform the

same operation, they may stumble through it in exactly the same way.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 14

Users must work hard to figure out each feature or screen. Most software products are designed for

(the few) users who understand its conceptual model and have mastered common procedures. For the

majority of customers, each feature or procedure is a frustrating, unwanted puzzle. Users might assume

these puzzles are an unavoidable cost of using computers, but they would certainly be happier without

this burden. (Microsoft Corporation, 2001)

The basic idea behind a Task Based or Inductive UI is that its important to figure out how the users want

to use the software and to make it guide them through those processes.

Many commercial software applications include user interfaces in which a screen presents a set of

controls, but leaves it to the user to deduce the page's purpose and how to use the controls to

accomplish that purpose. (Microsoft Corporation, 2001)

The goal is to guide the user through the process. An example of the differences can be seen in the

DeactivateInventoryItem example previously shown. A typical deductive UI might have an editable data

grid containing all of the inventory items. It would have editable fields for various data and perhaps a

drop down for the status of the inventory item, deactivated being one of them. In order to deactivate an

inventory item the user would have to go to the item in the grid, type in a comment as to why they were

deactivating it and then change the drop down to the status of deactivated. A similar example could be

where you click to a screen to edit an inventory item but go through the same process as seen in Figure

3.

Figure 6 A CRUD screen for an Inventory Item

If the user attempts to submit an item that is “deactivated” and has not entered a comment they will

receive an error saying that they must enter a comment as it is a mandatory field for a deactivated item.

Some UIs might be a bit more user friendly, they may not show the comment field until the user selects

deactivated from the drop down at which point it would appear on the screen. This is far more intuitive

to the user as it is a cue that they should be putting data in that field but one can do even better.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 15

Figure 7 Listing Screen with Link

A Task Based UI would take a different approach, likely it would show a list of inventory items, next to

an inventory item there might be a link to “deactivate” the item as seen in Figure 4. This link would take

them to a screen that would then ask them for a comment as to why they are deactivating the items

which is shown in Figure 5. The intent of the user is clear in this case and the software is guiding them

through the process of deactivating an inventory item. It is also very easy to build Commands

representing the user’s intentions with this style of interface.

Figure 8 Deactivating an Inventory Item

Web, Mobile, and especially Mac UIs have been trending towards the direction of being task based. The

UI guides you through a process and offers you contextually sensitive guidance pushing you in the right

direction. This is largely due to the style offering the capability of a much better user experience. There

is a solid focus on how and why the user is using the software; the user’s experience becomes an

integral part of the process. Beyond this there is also value on focusing more in general on how the user

wants to use the software; this is a great first step in defining some of the verbs of the domain.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 16

Works Cited
Microsoft Corporation. (2001, Feb 9). Microsoft Inductive User Interface Guidelines. Retrieved from

MSDN: http://msdn.microsoft.com/en-us/library/ms997506

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 17

Command and Query Responsibility Segregation
This chapter will introduce the concept of Command and Query Responsibility Segregation. It will look at

how the separation of roles in the system can lead towards a much more effective architecture. It will

also analyze some of the different architectural properties that exist in systems where CQRS has been

applied.

Origins

Command and Query Responsibility Segregation (CQRS) originated with Bertrand Meyer’s Command

and Query Separation Principle. Wikipedia defines the principle as:

It states that every method should either be a command that performs an action, or a query that returns

data to the caller, but not both. In other words, asking a question should not change the answer. More

formally, methods should return a value only if they are referentially transparent and hence possess no

side effects. (Wikipedia)

Basically it boils down to. If you have a return value you cannot mutate state. If you mutate state your

return type must be void. There can be some issues with this. Martin Fowler shows one example on the

bliki with:

Meyer likes to use command-query separation absolutely, but there are exceptions. Popping a stack is a

good example of a modifier that modifies state. Meyer correctly says that you can avoid having this

method, but it is a useful idiom. So I prefer to follow this principle when I can, but I'm prepared to break

it to get my pop. (Fowler)

Command and Query Responsibility Segregation was originally considered just to be an extension of this

concept. For a long time it was discussed simply as CQS at a higher level. Eventually after much

confusion between the two concepts it was correctly deemed to be a different pattern.

Command and Query Responsibility Segregation uses the same definition of Commands and Queries

that Meyer used and maintains the viewpoint that they should be pure. The fundamental difference is

that in CQRS objects are split into two objects, one containing the Commands one containing the

Queries.

The pattern although not very interesting in and of itself becomes extremely interesting when viewed

from an architectural point of view.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 18

Figure 9 Stereotypical Architecture

Figure 1 contains the stereotypical architecture discussed in the first chapter. One key aspect of the

architecture is that the service handles both commands and queries. More often than not the domain is

also being used for both commands and queries. The application of CQRS to this architecture although

quite simple in definition will drastically change architectural opportunities. A simple service to

transform is in Listing 1.

CustomerService

void MakeCustomerPreferred(CustomerId)

Customer GetCustomer(CustomerId)

CustomerSet GetCustomersWithName(Name)

CustomerSet GetPreferredCustomers()

void ChangeCustomerLocale(CustomerId, NewLocale)

void CreateCustomer(Customer)

void EditCustomerDetails(CustomerDetails)

Listing 2 Original Customer Service

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 19

Applying CQRS on the CustomerService would result in two services as shown in Listing 2.

While a relatively simple process, this will solve many of the problems that existed in the stereotypical

architecture. The service has been split into two separate services, a read side and a write side or the

Command side and the Query side.

This separation enforces the notion that the Command side and the Query side have very different

needs. The architectural properties associated with use cases on each side are tend to be quite

different. Just to name a few:

Consistency

Command: It is far easier to process transactions with consistent data than to handle all of the edge

cases that eventual consistency can bring into play.

Query: Most systems can be eventually consistent on the Query side.

Data Storage

Command: The Command side being a transaction processor in a relational structure would want to

store data in a normalized way, probably near 3rd Normal Form (3NF)

Query: The Query side would want data in a denormalized way to minimize the number of joins needed

to get a given set of data. In a relational structure likely in 1st Normal Form (1NF)

Scalability

Command: In most systems, especially web systems, the Command side generally processes a very small

number of transactions as a percentage of the whole. Scalability therefore is not always important.

Query: In most systems, especially web systems, the Query side generally processes a very large number

of transactions as a percentage of the whole (often times 2 or more orders of magnitude). Scalabilityis

most often needed for the query side.

CustomerWriteService

void MakeCustomerPreferred(CustomerId)

void ChangeCustomerLocale(CustomerId, NewLocale)

void CreateCustomer(Customer)

void EditCustomerDetails(CustomerDetails)

CustomerReadService

Customer GetCustomer(CustomerId)

CustomerSet GetCustomersWithName(Name)

CustomerSet GetPreferredCustomers()

Listing 3 Customer Service after CQRS

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 20

It is not possible to create an optimal solution for searching, reporting, and processing transactions

utilizing a single model.

The Query Side

As stated, the Query side will only contain the methods for getting data. From the original architecture

these would be all of the methods that return DTOs that the client consumes to show on the screen.

In the original architecture the building of DTOs was handled by projecting off of domain objects. This

process can lead to a lot of pain. A large source of the pain is that the DTOs are a different model than

the domain and as such require a mapping.

DTOs are optimally built to match the screens of the client to prevent multiple round trips with the

server. In cases with many clients it may be better to build a canonical model that all of the clients use.

In either case the DTO model is very different than the domain model that was built in order to

represent and process transactions.

Common smells of the problems can be found in many domains.

 Large numbers of read methods on repositories often also including paging or sorting

information.

 Getters exposing the internal state of domain objects in order to build DTOs.

 Use of prefetch paths on the read use cases as they require more data to be loaded by the ORM.

 Loading of multiple aggregate roots to build a DTO causes non-optimal querying to the data

model. Alternatively aggregate boundaries can be confused because of the DTO building

operations

The largest smell though is that the optimization of queries is extremely difficult. Because queries are

operating on an object model then being translated to a data model, likely by an ORM it can become

difficult to optimize these queries. A developer needs to have intimate knowledge of the ORM and the

database. The developer is dealing with a problem of Impedance Mismatch (for more discussion see

“Events as a Storage Mechanism”).

After CQRS has been applied there is a natural boundary. Separate paths have been made explicit. It

makes a lot of sense now to not use the domain to project DTOs. Instead it is possible to introduce a

new way of projecting DTOs. Figure

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 21

Figure 10 The Query Side

The domain has been bypassed. There is now a new concept called a “Thin Read Layer”. This layer reads

directly from the database and projects DTOs. There are many ways that this can be done with

handwritten ADO.NET and mapping code and a full blown ORM on the high end. Which choice is right

for a team depends largely on the team itself and what they are most comfortable with. Likely the best

solution is something in the middle as much of what an ORM provides is not needed and large amounts

of time will be lost manually creating mapping code. A possible solution would be to use a small

convention based mapping utility.

The Thin Read Layer need not be isolated from the database, it is not necessarily a bad thing to be tied

to a database vendor from the read layer. It is also not necessarily bad to use stored procedures for

reading, it again depends on the team and the non-functional requirements of the system.

The Thin Read Layer is not a complex piece of code although it can be tedious to maintain. One benefit

of the separate read layer is that it will not suffer from an impedance mismatch. It is connected directly

to the data model, this can make queries much easier to optimize. Developers working on the Query

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 22

side of the system also do not need to understand the domain model nor whatever ORM tool is being

used. At the simplest level they would need to understand only the data model.

The separation of the Thin Read Layer and the bypassing of the domain for reads allows also for the

specialization of the domain.

The Command Side

Overall the Command side remains very similar to the “Stereotypical Architecture”. The illustration in

Figure 3 should look nearly identical to the previously discussed architecture. The main differences are

that it now has a behavioral as opposed to a data centric contract which was needed in order actually

use Domain Driven Design and it has had the reads separated out of it.

Figure 11 The Command Side

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 23

In the “Stereotypical Architecture” the domain was handling both Commands and Queries, this caused

many issues within the domain itself. Some of those issues were:

 Large numbers of read methods on repositories often also including paging or sorting

information.

 Getters exposing the internal state of domain objects in order to build DTOs.

 Use of prefetch paths on the read use cases as they require more data to be loaded by the ORM.

 Loading of multiple aggregates to build a DTO causes non-optimal querying to the data model.

Alternatively aggregate boundaries can be confused because of the DTO building operations

Once the read layer has been separated the domain will only focus on the processing of Commands.

These issues also suddenly go away. Domain objects suddenly no longer have a need to expose internal

state, repositories have very few if any query methods aside from GetById, and a more behavioral focus

can be had on Aggregate boundaries.

This change has been done at a lower or no cost in comparison to the original architecture. In many

cases the separation will actually lower costs as the optimization of queries is simpler in the thin read

layer than it would be if implemented in the domain model. The architecture also carries lower

conceptual overhead when working with the domain model as the querying is separated; this can also

lead towards a lower cost. In the worst case, the cost should work out to be equal; all that has really

been done is the moving of a responsibility, it is feasible to even have the read side still use the domain.

By applying CQRS the concepts of Reads and Writes have been separated. It really begs the question of

whether the two should exist reading the same data model or perhaps they can be treated as if they

were two integrated systems, Figure 5 illustrates this concept. There are many well known integration

patterns between multiple data sources in order to maintain synchronisity either in a consistent or

eventually consistent fashion. The two distinct data sources allow the data models to be optimized to

the task at hand. As an example the Read side can be modeled in 1NF and the transactional model could

be modeled in 3nf.

The choice of integration model though is very important as translation and synchronization between

models can be become a very expensive undertaking. The model that is best suited is the introduction of

events, events are a well known integration pattern and offer the best mechanism for model

synchronization.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 24

Figure 12 Separated Data Models with CQRS

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 25

Events as a Storage Mechanism
Most systems in production today rely on the storing of current state in order to process transactions. In

fact it is rare to meet a developer who has worked on a system that maintains current state in any other

way. It has not always been like this.

Before the general acceptance of the RDBMS as the center of the architecture many systems did not

store current state. This was especially true in high performance, mission critical, and/or highly secure

systems. In fact if we look at the inner workings of a RDBMS we will find that most RDBMSs themselves

not actually work by managing current state!

The goal of this section is to introduce the concept of event sourcing, to show the benefits, to show how

a simple event storage system can be created utilizing a Relational Database for underlying data

management.

 What is a Domain Event?

An event is something that has happened in the past.

All events should be represented as verbs in the pas t tense such as CustomerRelocated, CargoShipped,

or InventoryLossageRecorded. For those who speak French, it should be in Passé Composé, they are

things that have completed in the past. There are interesting examples in the English language where it

is tempting to use nouns as opposed to verbs in the past tense, an example of this would be

“Earthquake” or “Capsize”, as a congressman recently worried about Guam, but avoid the temptation to

use names like this and stick with the usage of verbs in the past tense when creating Domain Events.

It is absolutely imperative that events always be verbs in the past tense as they are part of the

Ubiquitous Language. Consider the differences in the Ubiquitous Language when we discuss the side

effects from relocating a customer, the event makes the concept explicit where as previously the

changes that would occur within an aggregate or between multiple aggregates were left as an implicit

concept that needed to be explored and defined. As an example, in most systems the fact that a side

effect occurred is simply found by a tool such as Hibernate or Entity Framework, if there is a change

to the side effects of a use case, it is an implicit concept. The introduction of the event makes the

concept explicit and part of the Ubiquitous Language; relocating a customer does not just change some

stuff, relocating a customer produces a CustomerRelocatedEvent which is explicitly defined within the

language.

In terms of code, an event is simply a data holding structure as can be seen in Listing 1.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 26

The code listing looks very similar to the code listing that was provided for a Command the main

differences exist in terms of significance and intent. Commands have an intent of asking the system to

perform an operation where as events are a recording of the action that occurred.

Other Definitions and Discussion

There is a related concept to a Domain Event in this description that is defined in Streamlined Object

Modeling (SOM). Many people use the term “Domain Event” In SOM when discussing “The Event

Principle”

Model the event of people interacting at a place with a thing with a transaction object. Model a point-in-

time interaction as a transaction with a single timestamp; model a time-interval interaction as a

transaction with multiple timestamps. (Jill Nicola, 2002ll, p. 23)

Although many people use the terminology of a Domain Event to describe this concept the terminology

is not having the same definition as a Domain Event in the context of this document. SOM uses another

terminology for the concept that better describes what the object is, a Transaction. The concept of a

transaction object is an important one in a domain and absolutely deserves to have a name. An example

of such a transaction might be a player swinging a bat, this is an action that occurred at a given point in

time and should be modeled as such in the domain, this is not however the same as a Domain Event.

This also differs from Martin Fowler’s example of what a Domain Event is.

“Example: I go to Babur’s for a meal on Tuesday, and pay by credit card. This might be modeled as an

event, whose type is “Make Purchase”, whose subject is my credit card, and whose occurred date is

Tuesday. If Babur’s uses and old manual system and doesn’t transmit the transaction until Friday, then

the noticed date would be Friday.” (Fowler)

Further along

“By funneling inputs of a system into streams of Domain Events you can keep a record of all the inputs to

a system. This helps you to organize your processing logic, and also allows you to keep an audit log of the

system” (Fowler)

public class InventoryItemDeactivatedEvent {

 public readonly Guid InventoryItemId;

 public readononly string Comment;

 public InventoryItemDeactivatedEvet(Guid id, string comment) {

 InventoryItemId = id;

 Comment = comment;

}

Listing 4 A Simple Event

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 27

The astute reader may pick up that what Martin is actually describing here is a Command as was

discussed previously when discussing Task Based UIs. The language of “Make Purchase” is wrong. A

purchase was made. It makes far more sense to introduce a PurchaseMade event. Martin did actually

make a purchase at the location, they did actually charge his credit card, and he likely ate and enjoyed

his food. All of these things are in the past tense, they have already happened and cannot be undone.

An example such as the sales example given also tends to lead towards a secondary problem when built

within a system. The problem is that the domain may be responsible for filling in parts of the event.

Consider a system where the sale is processed by the domain itself, how much is the sales tax? Often

the domain would be calculating this as part of its calculations. This leads to a dual definition of the

event, there is the event as is sent from the client without the sales tax then the domain would receive

that and add in the sales tax, it causes the event to have multiple definitions, as well as forcing

mutability on some attributes. Dual events can sidestep this issue (one for the client with just what it

provides and another for the domain including what it has enriched the event from the client with) but

this is basically the command event model and the linguistic problems still exist.

A further example of the linguistic problems involved can be shown in error conditions. How should the

domain handle the fact that a client told it to do something that it cannot? This condition can exist for

many reasons but let’s imagine a simple one of the client simply not having enough information to be

able to source the event in a known correct way. Linguistically the command/event separation makes

much more sense here as the command arrives in the imperative “Place Sale” while the event is in the

past tense “SaleCompleted”. It is quite natural for the domain to reject a client attempting to “Place a

sale”; it is not natural for the domain to tell the client that something in the past tense no longer

happened. Consider the discussion with a domain expert; does the domain have a time machine?

Parallel realities are far too complex and costly to model in most business systems.

These are exactly the problems that have led to the separation of the concepts of Commands and

Events. This separation makes the language much clearer and although subtle it tends to lead

developers towards a clearer understanding of context based solely on the language being used. Dual

definitions of a concept force the developer to recognize and distinguish context, this weight can

translate into both ramp up time for new developers on a project and another thing a member of the

team needs to “remember”. Anytime a team member needs to remember something to distinguish

context there is a higher probability that it will be overlooked or mistook for another context. Being

explicit in the language and avoiding dual definitions helps make things clearer both for domain experts,

the developers, and anyone who may be consuming the API.

Events as a Mechanism for Storage

When most people consider storage for an object they tend to think about it in a structural sense. That

is when considering how the “sale” discussed above should be stored they think about it as being stored

as a “Sale” that has “Line Items” and perhaps some “Shipping Information” associated with it. This is not

however the only way that the problem can be conceptualized and other solutions offer different and

often interesting architectural properties.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 28

Consider for a moment the creation of a small Order object for a web based sale system. Most

developers would envision something similar to what is represented in Figure 1. That is a structural

viewpoint of what the Order is. An Order has n Line Items and Shipping Information. Of course this is an

overly simplified view of what an Order is but it can be seen that the focus is upon the structure of the

order and its parts.

Figure 13 A Structural View of an Order

This is not the only way that this data can be viewed. Previously in the area of discussions there was a

discussion about the concept of a transaction. Developers deal with the concept of transactions

regularly, they can be viewed as representing the change between a point and the next subsequent

point. They are also regularly called “Deltas”. The delta is between two static states can always be

defined but more often than not this is left to be an implicit concept, usually relegated to a framework

such as Hibernate in the Java world or Entity Framework in the Microsoft world. These frameworks save

the original state and then calculate the differences with the new state and update the backing data

model accordingly. The making of these deltas explicit can be highly valuable both in terms of technical

benefits and more importantly in business benefits.

The usage of such deltas can be seen in many mature business models. The canonical example of delta

usage is in the field of accounting. When looking at a ledger such as in Figure 2 each transaction or delta

is being recorded. Next to it is a denormalized total of the state of the account at the end of that delta.

In order to calculate this number the current delta is applied to the last known value. The last known

value can be trusted because at any given point the transactions from the “beginning of time” for that

account could be re-run in order to reconcile the validity of that value. In there exists a verifiable audit

log.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 29

Date Comment Change Current Balance

1/1/2000 Deposit from 1372 +10000.00 10000.00

1/3/2000 Check 1 -4000.00 6000.00

1/4/2000 Purchase Coffee -3.00 5997.00

1/6/2000 Purchase Internet -5.00 5992.00

1/8/2000 Deposit from 1373 +1000.00 6992.00
Figure 14 A Simplified Ledger

Because all of the transactions or deltas associated with the account exist, they can be stepped through

verifying the reult. The “Current Balance” at any point can be derived either by looking at the “Current

Balance” or by adding up all of the “Changes” since the beginning of time for the account. The second

property is obviously valuable in a domain such as accounting as accountants are dealing with money

and the ability to check that calculations were performed correctly is extremely valuable, it was even

more valuable before computers when it was common place to have an exhausted accountant make a

mistake in a calculation at 3 am when they should be sleeping instead of working with the books.

There are however some other interesting properties to this mechanism of representing state, as an

example, it is possible to go back and look at what a state was at a given point in time. Consider for that

the account was allowed to reach a balance of below zero and there is a rule that says it is not supposed

to. It is possible and relatively easy, to view the account as it was just prior to processing that

transaction that put it into the invalid state and see what state it was in, making it far easier to

reproduce what often times end up as heisenbugs in other circumstances.

These types of benefits are not only limited to naturally transaction based domains though. In fact every

domain is a naturally transaction based domain when Domain Driven Design is being applied. When

applying Domain Driven Design there is a heavy focus on behaviors, normally coinciding with use cases,

Domain Driven Design is interested in how users use the system.

Returning to the Order example from Figure 1, the same order could be represented in the form of a

transactional model as shown in Figure 3.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 30

Figure 15 Transactional View of Order

This can be applied to any type of object. By replaying through the events the object can be returned to

the last known state. It is mathematically equivalent to store the end of the equation or the equation

that represents it. There is a structural representation of the object, but it exists only by replaying

previous transactions to return the structure to its last known state, data is not persisted in a structure

but as a series of transactions. One very interesting possibility here is that unlike when storing current

state in a structural way there is no coupling between the representation of current state in the domain

and in storage, the representation of current state in the domain can vary without thought of the

persistence mechanism.

It is vitally important to note the language in Figure 3. All of the verbs are in the past tense. These are

Domain Events. Consider what would happen if the language were in the imperative tense, “Add 2 socks

item 137”, “Create Cart”. What if there were behaviors associated with adding and item (such as

reserving it from an inventory system via a webservice call), should these behaviors be when

reconstituting an object? What if logic has changed so that this item could no longer be added given the

context? This is one of many examples where dual contexts between Commands and Events are

required, there is a contextual difference between returning to a given state and attempting to

transition to a new one.

Cart
Created

Added 2
Socks Item

137

Added 4
Shirts Item

354

Shipping
Information

Added

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 31

There is no Delete

A common question that arises is how to delete information. It is not possible as previously jump into

the time machine and say that an event never happened (eg: delete a previous event). As such it is

necessary to model a delete explicitly as a new transaction as shown in Figure 4. Further discussion on

the business value of handling deletes in this mechanism can be found in “Business Value of the Event

Log”.

Is

Figure 16 Transactional View of Order with Delete

In the event stream in Figure 4 the two pairs of socks were added then later removed. The end state is

equivalent to not having added the two pairs of socks. The data has not however been deleted, new

data has been added to bring the object to the state as if the first event had not happened, this process

is known as a Reversal Transaction.

By placing a Reversal Transaction in the event stream not is the object returned to the state as if the

item had not been added, the reversal leaves a trail that shows that the object had been in that state at

a given point in time.

There are also architectural benefits to not deleting data. The storage system becomes an additive only

architecture, it is well known that append-only architectures distribute more easily than updating

architectures because there are far fewer locks to deal with.

Cart Created
Added 2

Socks Item
137

Added 4
Shirts Item

354

Removed 2
Socks Item

137

Shipping
Information

Added

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 32

Performance and Scalability

As an append-only model storing events is a far easier model to scale. There is however other benefits in

terms of performance and scalability especially compared with a stereotypical relational model. As an

example, the storage of events offers a much simpler mechanism to optimize as it is limited to a single

append-only model. There are many other benefits.

Partitioning

A very common performance optimization in today’s systems is the use of Horizontal Partitioning. With

Horizontal Partitioning the same schema will exist in many places and some key within the data will be

used to determine in which of the places the data will exist. Some have renamed the term to “Sharding”

as of late. The basic idea is that you can maintain the same schema in multiple places and based on the

key of a given row place it in one of many partitions.

One problem when attempting to use Horizontal Partitioning with a Relational Database it is necessary

to define the key with which the partitioning should operate. This problem goes away when using

events. Aggregate IDs are the only partition point in the system. No matter how many aggregates exist

or how they may change structures, the Aggregate Id associated with events is the only partition point in

the system.

Horizontally Partitioning an Event Store is a very simple process.

Saving Objects

When dealing with a stereotypical system utilizing a relational data storage it can be quite complex to

figure out what has changed within the Aggregate. Again many tools have been built to help alleviate

the pain that arises from this often complex task but is the need for a tool a sign of a bigger problem?

Most ORMs can figure out the changes that have occurred within a graph. They do this generally by

maintaining two copies of a given graph, the first they hold in memory and the second they allow other

code to interact with. When it becomes time to save a complex bit of code is run, walking the graph the

code has interacted with and using the copy of the original graph to determine what has changed while

the graph was in use by the code. These changes will then be saved back to the data storage system.

In a system that is Domain Event centric, the aggregates are themselves tracking strong events as to

what has changed within them. There is no complex process for comparing to another copy of a graph,

instead simply ask the aggregate for its changes. The operation to ask for changes is far more efficient

than having to figure out what has changed.

Loading Objects

A similar issue exists when loading objects. Consider the work that is involved with loading a graph of

objects in a stereotypical relational database backed system. Very often there are many queries that

must be issued to build the aggregate. In order to help minimize the latency cost of these queries many

ORMs have introduced a heuristic of Lazy Loading also known as Delayed Loading where a proxy is given

in lieu of the real object. The data is only loaded when some code attempts to use that particular object.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 33

Lazy Loading is useful because quite often a given behavior will only use a certain portion of data out of

the aggregate and it prevents the developer from having to explicitly represent which data that is while

amortizing the cost of the loading of the aggregate. It is this need for amortization of cost that shows a

problem.

Aggregates are considered as a whole represented by the Aggregate Root. Conceptually an Aggregate is

loaded and saved in its entirety. (Evans, 2001).

Conceptually it is much easier to deal with the concept of an Aggregate being loaded and saved in its

entirety. The concept of Lazy Loading is not a trivial one when added and is especially not trivial when

optimizing use cases. The heuristic is needed because loading full aggregates from a relational database

is operationally too slow.

When dealing with events as a storage mechanism things are quite different. There is but one thing

being stored, events. Simply load all of the events for an Aggregate and replay them. There can only

ever be a single query on the system, there is no need to attempt to implement things like Lazy Loading.

This is bad for people who want to build complex and quite often impressive frameworks for managing

things like Lazy Loading but it is good for development teams who no longer need to learn these

frameworks.

Many would quickly point out that although it requires more queries in a relational system, when

storing events there may be a huge number of events for some aggregates. This can happen quite often

and a relatively simple solution exists for the problem.

Rolling Snapshots

A Rolling Snapshot is a denormalization of the current state of an aggregate at a given point in time. It

represents the state when all events to that point in time have been replayed. Rolling Snapshots are

used as a heuristic to prevent the need to load all events for the entire history of an aggregate. Figure 5

shows a typical Event Stream. One way of process thing the event stream is to replay the events from

the beginning of time until the end of the event stream is reached.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 34

Figure 17 An Event Stream

The problem that exists is that there may be a very large number of events between the beginning of

time and the current point. It can be easily imagined that there is an event stream with a million or more

events that have occurred, such an event stream would be quite inefficient to load.

The solution is to use a Rolling Snapshot, to place a denormalization of the state at a given point in time.

It would then be possible to only play the events from that point in time forward in order to load the

Aggregate.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 35

Figure 18 Event Stream with Snapshot

Figure 6 shows an Event Stream with a Rolling Snapshot placed within it. The process for rebuilding an

Aggregate changes when using Rolling Snapshots. Instead of reading from the beginning of time

forward, it is read backwards putting the events on to a stack until either there were no more events left

or a snapshot was found. The snapshot would then if found be applied and the events would be popped

off the stack and applied until the stack was empty.

It is important to note that although this is an easy way to conceptualize how Rolling Snapshots work,

that this is a less than ideal solution in a production system for various reasons. Further discussion on the

implementation of Rolling Snapshots can be found in “Building an Event Storage”.

The snapshot itself is nothing more than a serialized form of the graph at that given point in time. By

having the state of that graph at that point in time replaying all the events prior to that snapshot can

be avoided. Snapshots can be taken asynchronously by a process monitoring the Event Store.

Introducing Rolling Snapshots allows control of the worst case when loading from events. The maximum

number of events that would be processed can be tuned to optimize performance for the system in

question. With the introduction of Rolling Snapshots it is a relatively trivial process to achieve one to

two orders of magnitude of performance gain on the two operations that the Event Storage supports. It

is important though to remember that Rolling Snapshots are just a heuristic and that conceptually the

event stream is still viewed in its entirety.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 36

Impedance Mismatch

Using events as a storage mechanism also offers very different properties when compared to a typical

relational model when the impedance mismatch that exists between a typical relational model and the

object oriented domain model is analyzed. Scott Ambler describes the problem in an essay on

agiledata.org as

“Why does this impedance mismatch exist? The object-oriented paradigm is based on proven software

engineering principles. The relational paradigm, however, is based on proven mathematical principles.

Because the underlying paradigms are different the two technologies do not work together seamlessly.

The impedance mismatch becomes apparent when you look at the preferred approach to access: With

the object paradigm you traverse objects via their relationships whereas with the relational paradigm

you join the data rows of tables. This fundamental difference results in a non-ideal combination of

object and relational technologies, although when have you ever used two different things together

without a few hitches?” (Ambler)

The impedance mismatch between the domain model and the relational database has a large cost

associated with it. There are many tools that aim to help minimize the effects of the impedance

mismatch such as Object Relational Mappers (ORM). They tend to work well in most situations but there

is still a fairly large cost associated to the impedance mismatch even when using tools such as ORMs.

The cost is that a developer really needs to be intimately with both the relational model and the object

oriented model. They also need to be familiar with the many subtle differences between the two

models. Scott identifies this with

“To succeed using objects and relational databases together you need to understand both paradigms,

and their differences, and then make intelligent tradeoffs based on that knowledge.” (Ambler)

Some of these subtle differences can be found in Wikipedia under the “Object-Relational Impedance

Mismatch” page but to include some of the major differences.

Declarative vs. imperative interfaces — Relational thinking tends to use data as interfaces, not behavior

as interfaces. It thus has a declarative tilt in design philosophy in contrast to OO's behavioral tilt. (Some

relational proponents propose using triggers, stored procedures, etc. to provide complex behavior, but

this is not a common viewpoint.) (Object-Relational Impedance Mismatch)

Structure vs. behaviour — OO primarily focuses on ensuring that the structure of the program is

reasonable (maintainable, understandable, extensible, reusable, safe), whereas relational systems focus

on what kind of behaviour the resulting run-time system has (efficiency, adaptability, fault-tolerance,

liveness, logical integrity, etc.). Object-oriented methods generally assume that the primary user of the

object-oriented code and its interfaces are the application developers. In relational systems, the end-

users' view of the behaviour of the system is sometimes considered to be more important. However,

relational queries and "views" are common techniques to re-represent information in application- or

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 37

task-specific configurations. Further, relational does not prohibit local or application-specific structures

or tables from being created, although many common development tools do not directly provide such a

feature, assuming objects will be used instead. This makes it difficult to know whether the stated non-

developer perspective of relational is inherent to relational, or merely a product of current practice and

tool implementation assumptions. (Object-Relational Impedance Mismatch)

Set vs. graph relationships - The relationship between different items (objects or records) tend to be

handled differently between the paradigms. Relational relationships are usually based on idioms taken

from set theory, while object relationships lean toward idioms adopted from graph theory (including

trees). While each can represent the same information as the other, the approaches they provide to

access and manage information differ. (Object-Relational Impedance Mismatch)

There are many other subtle differences such as data types, identity, and how transactions work. The

object-relational impedance mismatch can be quite a pain to deal with and it requires a very large

amount of knowledge to deal with effectively.

There is not an impedance mismatch between events and the domain model. The events are

themselves a domain concept, the idea of replaying events to reach a given state is also a domain

concept. The entire system becomes defined in domain terms. Defining everything in domain terms not

only lowers the amount of knowledge that developers need to have, it also limits the number of

representations of the model needed as the events are directly tied to the domain model itself.

Business Value of the Event Log

It needs to be made clear at the very start of this section that the value of the Event Log is directly

correlated with places that you would want to use Domain Driven Design in the first place. Domain

Driven Design should be used in places where the business derives competitive advantage. Domain

Driven Design itself is very difficult and expensive to apply; a company will however receive high ROI on

the effort if the domain is complex and if they derive competitive advantage from it. Using an Event Log

similarly will have high ROI when dealing with an area of competitive advantage but may have negative

ROI in other places.

Storing only current state only allows to ask certain kinds of questions of the data. For example consider

orders in the stock market. They can change for a few reasons, an order can change the amount of

volume that they would like to buy/sell, the trading system can automatically adjust the volume of an

order, or a trade could occur lowering the volume available on the current order.

If posed with a question regarding current liquidity such as the price for a given number of shares in the

market, it really does not matter which of these changes occurred, it does not really matter how the

data got the way it was, it matters what it is at a given point in time. A vast majority of queries even in

the business world are focused on the what, labels to send customers mails, how much was sold in April,

how many widgets are in the warehouse.

There are however other types of queries that are becoming more and more popular in business, they

focus on the how. Examples can commonly be seen in the buzzword “Business Intelligence”. Perhaps

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 38

there is a correlation between people having done an action and their likelyhood of purchasing some

product? These types of questions generally focus on how something came into being as opposed to

what it came out to be.

It is best to go through an example. There is a development team at a large online retailer. In an

iteration planning meeting a domain expert comes up with an idea. He believes that there is a

correlation between people having added then removed an item from their cart and their likelihood of

responding to suggestions of that product by purchasing it at a later point. The feature is added to the

following iteration.

The first hypothetical team is utilizing a stereotypical current state based mechanism for storing state.

They plan that in this iteration they will add tracking of items via a fact table that are removed from

carts. They plan for the next iteration that they will then build a report. The business will receive after

the second iteration a report that can show them information back to the previous iteration when the

team released the functionality that began tracking items being removed from carts.

This is a very stereotypical process, at some organizations the report and the tracking may be released

simultaneously but this is a relatively small detail in the handling. From a business perspective the

domain experts are happy, they made a request of the team and the team was able to quickly fulfill the

request, new functionality has been added in a quick and relatively painless way. The second team will

however have quite a different result.

The second team has been storing events; they represent their current state by building up off of a

series of events. They just like the first team go through and add tracking of items removed from carts

via a fact table but they also run this handler from the beginning of the event log to back populate all of

the data from the time that the business started. They release the report in the same iteration and the

report has data that dates back for years.

The second team can do this because they have managed to store what the system actually did as

opposed to what the current state of data is. It is possible to go back and look and interpret the old data

in new and interesting ways. It was never considered to track what items were removed from carts or

perhaps the number of times a user removes and items from their cart was considered important. These

are both examples of new and interesting ways of looking at data.

As the events represent every action the system has undertaken any possible model describing the

system can be built from the events.

Businesses regularly come up with new and interesting ways of looking at data. It is not possible with

any level of confidence to predict how a business will want to look at today’s data in five years. The

ability for the business to look at the data in the way that it wants in five years is of an unknown but

possibly extremely high value; it has already been stated that this should be done in areas where the

business derives its competitive advantage so it is relatively easy to reason that the ability to look at

today’s data in an unexpected way could be a competitive advantage for the business. How do you value

the possible success or failure of a company based upon an architectural decision now?

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 39

How do software teams justify looking at their Magic 8 Ball to predict what the business will need in five

or even ten years? Many try to use YAGNI (You Ain’t Gonna Need It) (Wikipedia) but YAGNI only applies

when you actually know that you won’t need it, how can the dynamic world of business and how they

may want to look at data in five or ten years be predicted?

 Is it more expensive to actually model every behavior in the system? Yes.

 Is it more expensive in terms of disk cost and thought process to store every event in the

system? Yes.

 Are these costs worth the ROI when the business derives a competitive advantage from the

data?

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 40

Works Cited
Ambler, S. W. (n.d.). The Object Relational Mismatch. Retrieved from agiledata.org:

http://www.agiledata.org/essays/impedanceMismatch.html

Evans, E. (2001). Domain Driven Design. Addisson Wesley.

Fowler, M. (n.d.). Domain Event. Retrieved from EAA Dev:

http://martinfowler.com/eeaDev/DomainEvent.html

Jill Nicola, M. M. (2002ll). Streamlined Object Modelling. Prentice H.

Object-Relational Impedance Mismatch. (n.d.). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Wikipedia. (n.d.). You ain't gonna need it. Retrieved from wikipedia:

http://en.wikipedia.org/wiki/You_ain't_gonna_need_it

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 41

Building an Event Storage
In “Events as a Storage Mechanism” the concept of rebuilding state from a series of events was looked

at from a conceptual viewpoint. This chapter will focus on the implementation of an actual Event

Storage and some of the issues that come up in producing an implementation.

The implementation discussed in this chapter is not intended to be a production quality Event Storage,

more so it is provided as a discussion point around how to build an Event Storage. The implementation

here although not highly performant could meet the needs of a large percentage of applications that are

built today.

For the explanatory implementation it is easiest to build the Event Storage in an existing technology

such as a RDBMS. This will alleviate many of the technical issues that can arise that are out of the scope

of a basic discussion on how to build an event storage such as transaction commit models or data

locality for read performance.

Structure

A basic Event Storage can be represented in a Relational Database utilizing only two tables.

Column Name Column Type

AggregateId Guid

Data Blob

Version Int
Figure 19 Table Layout for Events Table

This table represents the actual Event Log. There will be one entry per event in this table. The event

itself is stored in the [Data] column. The event is stored using some form of serialization, for the rest of

this discussion the mechanism will assumed to be built in serialization although the use of the memento

pattern can be highly advantageous.

The table is shown with the minimum amount of information possible, most organizations would want

to add a few columns such as the time that the change was made or context information associated with

the change. Examples of context information might include the user that initiated the change, the ip

address they sourced the change from, or their level of permission when they sourced the change.

A version number is also stored with each event in the Events Table. This can generally be thought of as

an increasing integer for most cases. Each event that is saved has an incremented version number. The

version number is unique and sequential only within the context of a given aggregate. This is because

Aggregate Root boundaries are consistency boundaries.

The [AggregateId] column is a foreign key that should be indexed; it points to the next table which is the

Aggregates table.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 42

Column Name Column Type

AggregateId Guid

Type Varchar

Version Int
Figure 20 Table Layout for Aggregates Table

Author comment: I have gone back and forth between calling this concept “Aggregate” in the Event

Storage in lieu of another name such as “Event Provider” as “Aggregate” is really a domain concept and

an Event Storage could work without a domain.

The Aggregates table is representing the aggregates currently in the system, every aggregate must have

an entry in this table. Along with the identifier there is a denormalization of the current version number.

This is primarily an optimization as it could be derived from the Events table but it is much faster to

query the denormalization that it would be to query the Events table directly. This value is also used in

the optimistic concurrency check.

Also included is a [Type] column for this example, this would be the fully qualified name of the type of

aggregate being stored. This can be useful for various purposes not the least of which is debugging, it is

however unnecessary for the creation of a basic Event Storage.

Operations

Event Storages are far simpler that most data storage mechanisms as they do not support general

purpose querying. An Event Storage at its simplest level has only two operations. Having only two

operations makes an Event Storage simpler than most data storage mechanisms as well as easier to

optimize.

The first operation is to get all of the events for an aggregate. It is extremely important that the events

are ordered in the same order that they were written, the version number can be used for this purpose.

This can all be done quite simply using an underlying RDBMS.

SELECT * FROM EVENTS WHERE AGGREGATEID=’’ ORDER BY VERSION

This is the only query that should be executed by a production system against the Event Storage. A

possible secondary query that can be useful is to limit this result set by an actual date to see the state of

an object at a point in time, but generally a production system should not be doing this.

The other operation an Event Storage must support is the writing of a set of events to an aggregate root.

This can be done either in code or in a stored procedure. A stored procedure or dynamically generated

SQL containing if statements is preferred as without the insert process will take multiple round trips. The

pseudo-code for the insert process can be seen in Listing 1.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 43

Nts ta

The write operation is also relatively simple though there are a few subtleties to be found within it. The

basic narrative is that it first checks to see if an aggregate exists with the unique identifier it is to use, if

there is not one it will create it and consider the current version to be zero. It will then attempt to do an

optimistic concurrency test on the data coming in if the expected version does not match the actual

version it will raise a concurrency exception. Providing the versions are the same, it will then loop

through the events being saved and insert them into the events table, incrementing the version number

by one for each event. Finally it will update the Aggregates table to the new current version number for

the aggregate. It is important to note that these operations are in a transaction as it is required to insure

that optimistic concurrency amongst other things works in a distributed environment.

The contract for an Event Storage in code can be defined with the following interface.

That is it. All of the operations on the most basic Event Storage are completed. While not a trivial

Although not a trivial exercise to create a production quality Event Storage the overall concepts behind

an Event Storage are relatively easy. Likely in the future there will be many off the shelf Event Storage

systems available as either products or open source projects. There is however one very important

optimization that was discussed in “Events as a Storage Mechanism” that really should exist in most

systems and that is the concept of a “Rolling Snapshot”.

public interface IEventStore {

 void SaveChanges(Guid AggregateId, int OriginatingVersion, IEnumerable<Event> events);

 IEnumerable<Event> GetEventsFor(Guid AggregateId);

}

Begin

 version = SELECT version from aggregates where AggregateId = ‘’

 if version is null

 Insert into aggregates

 version = 0

 end

 if expectedversion != version

 raise concurrency problem

 foreach event

 insert event with incremented version number

 update aggregate with last version number

End Transaction

Listing 5 Write Operation in Event Storage

Listing 6 Interface for an Event Store

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 44

Rolling Snapshots

Rolling Snapshots are a heuristic to prevent the need to load all of the events when issuing a query to

rebuild an Aggregate. They are a denormalization of the aggregate at a given point in time. A change to

the query logic and an additional table are all that is necessary to add the heuristic to the basic Event

Storage. Further discussion on Rolling Snapshots at a conceptual level can be found in the “Events as a

Storage Mechanism” chapter.

Column Name Column Type

AggregateId Guid

SerializedData Blob

Version Int
Figure 21 Definition of Snapshots Table

The Snapshots table is relatively basic. It’s primary data in the blob that contains the serialized version of

the aggregate at a given point in time. The serialized data could be in any one of a host of possible

schemas, binary, XML, raw text, etc. The decision on how to serialize the snapshots is really dependent

upon the system being built. A version number is included with the snapshot, it represents which

version of the aggregate the snapshot represents.

In order to have snapshots being created a process that handles the task of creating the snapshots

needs to be introduced. This process can live outside of the Application Server as a background process.

There can be a single process running or many depending on needs due to throughput. All snapshots

happen asynchronously. Figure 4 shows a conceptual architecture with a [SnapShotter] process

introduced.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 45

Figure 22 Introduction of a Snapshotter

The [SnapShotter] sits behind the Event Storage and periodically queries for any Aggregates that need to

have a snapshot taken because they have gone past the allowed number of events. This query can be

done quite easily in the simple Event Storage discussed by joining the Aggregates table to the Snapshots

table on the Aggregate identifier. The difference is calculated by subtracting the last snapshot version

from the current version with a where clause that only returned the aggregates with a difference

greater than some number. This query will return all of the Aggregates that a snapshot to be created.

The snapshotter would then iterate through this list of Aggregates to create the snapshots (if using

multiple snapshotters the competing consumer pattern works well here).

The process of creating a snapshot involves having the domain load up the current version of the

Aggregate then take a snapshot of it. The creation of the snapshot can be done in many ways. Once the

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 46

snapshot has been taken, it is saved back to the snapshot table so that queries will have the snapshot

available.

Many use the default serialization package available with their platform with good results though the

Memento pattern is quite useful when dealing with snapshots. The Memento pattern (or custom

serialization) better insulates the domain over time as the structure of the domain objects change. The

default serializer has versioning problems when the new structure is released (the existing snapshots

must either deleted and recreated or updated to match the new schema). The use of the Memento

pattern allows the separated versioning of the snapshot schema from the domain object itself.

In “Events as a Storage Mechanism” a different, simpler mechanism was shown for the storage of

snapshots. That system had the snapshots in line in the Event Log, this other mechanism although

conceptually simpler has a few issues that can come up in a production system. The issues revolve

around the need of ordering of the snapshot within the event log.

Consider that the Snapshotter has realized that an Aggregate Root needs to have a snapshot taken. It

loads up the Aggregate and takes the snapshot. Unfortunately while it was doing this, one of the

Application Servers made a change to the same Aggregate. As the snapshot is position dependent within

the Event Log, it would receive an optimistic concurrency failure. The easy answer would be to simply

repeat the process but what if it failed again? The snapshotter on a very busy Aggregate could end up in

a situation where it would have a very low probability of actually writing the snapshot successfully.

By separating the snapshots into their own table and associating them to a version of the aggregate this

problem is solved. Ordering of snapshots is not needed, the snapshot does not even need to be at the

latest version, the snapshot that is taken is valid at the version it was taken.

Snapshots are a heuristic that will dramatically improve the performance of many systems, though not

all systems need snapshotting. It is generally recommended to handle development without

snapshotting as it can always be introduced later as a simple performance enhancement for the system.

Event Storage as a Queue

It has been previously discussed that the events coming out of a domain are also an [Integration Model].

Very often these events are not only saved but also published to queue where they are dispatched

asynchronously to listeners either within the same system (the reporting model is a good example) or to

other applications. An issue that exists with many systems publishing events is that they require a two-

phase commit between whatever storage they are using (Relational or otherwise) and the publishing of

their events to the queue.

The reason that the two-phase commit is needed is that a catastrophe could occur during the small

period of time between when the write to the data storage commits and when the write to the queue

commits. If a failure were to happen during this period the message would not be published on the

queue (or if the other direction it may be published but the change may not be saved). If either case

were to happen the listeners of the events would be out of sync with the producer.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 47

The two-phase commit can be expensive but for low latency systems there is a larger problem when

dealing with this situation. Generally the queue itself is persistent so the event becomes written on disk

twice in the two-phase commit, once to the Event Storage and once to the persistent queue. Given for

most systems having dual writes is not that important but if you have low latency requirements it can

become quite an expensive operation as it will also force seeks on the disk. Figure 5 illustrates the two-

phase commit between data storage and a publishing queue.

Figure 23 Two Phase Commit with Queue

Some try to get around this problem by only writing to a queue then have something on the other side

of the queue update the data storage with the changes represented by the events, this however has

some issues. The largest issue is that not all of the events will be able to be written to the storage,

eventual consistency has been introduced and it is possible that an optimistic concurrency problem will

occur on the write of the events. Dealing with this problem in a production system is non-trivial.

Many organizations do the opposite, use the event storage as a queue. Adding a sequence number to

the Events table previously discussed allows the use the Event Storage as a queue. Figure 5 illustrates

the change to the schema of the Events table.

Column Name Column Type

AggregateId Guid

Data Blob

SequenceNumber Long

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 48

Version Int
Figure 24 Events Table as a Queue

The database would insure that the values of sequence number would be unique and incrementing, this

can be easily done using an auto-incrementing type. Because the values are unique and incrementing a

secondary process can chase the Events table, publishing the events off to ther queue. The chasing

process would simply have to store the value of the sequence number of the last event it had processed,

it could even update this value with a two-phase commit bringing the update and the publish to the

queue into the same transaction. This process can be seen in Figure 7.

Figure 25 Event Storage as a Queue

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 49

The work has been taken off of the initial processing in a known safe way. The publish can happen

asynchronously to the actual write. This lowers the latency of completing the initial operation, it also will

limit the number of disk writes in the processing of the initial request to one. This strategy can be

extremely valuable when dealing with low latency requirements as it allows much of the work on the

initial processing to be offloaded to another process asynchronously and in a safe way, there is little

difference whether the publish happens as part of the initial processing or asynchronously as generally

messages are published asynchronously anyways, using the Event Store as a queue just raises the time

until the message is actually published slightly, this can be viewed as slightly raising the SLA.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 50

CQRS and Event Sourcing
CQRS and Event Sourcing become most interesting when combined together. This chapter looks at the

intersection of these two concepts within a system where Domain Driven Design has been applied.

CQRS and Event Sourcing have a symbiotic relationship. CQRS allows Event Sourcing to be used as the

data storage mechanism for the domain. One of the largest issues when using Event Sourcing is that you

cannot ask the system a query such as “Give me all users whose first names are ‘Greg’”. This is due to

not having a representation of current state. With CQRS the only query that exists within the domain is

GetById which is supported with Event Sourcing.

Event Sourcing is also very important when building out a non-trivial CQRS based system. The problem

with integration between the two models is a large one. The maintaining of say relational models, one

for read and the other for write, is quite costly. It becomes especially costly when you factor in that

there is also an event model in order to synchronize the two. With Event Sourcing the event model is

also the persistence model on the Write side. This drastically lowers costs of development as no

conversion between the models is needed.

Figure 26 Stereotypical Architecture Sending Commands

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 51

The original stereotypical architecture with using commands in Figure 1 can be compared to Figure 2

CQRS with Event Sourcing and found to be roughly equivalent amounts of work.

Figure 27 CQRS with Event Sourcing

Cost Analysis

The client will be identical amounts of work between the two architectures. This is because the client

operates in the exact same way. In both architectures the client receives DTOs and produces Commands

that tell the Application Server to do something.

The queries between the two models will also be very similar in terms of cost. In the stereotypical

architecture the queries are being built off of the domain model, in the CQRS based architecture they

are being built by the Thin Read Layer projecting directly to DTOs. As was discussed in “Command and

Query Responsibility Segregation” the Thin Read Layer should be equally or in some cases less

expensive.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 52

The main differentiation between the two architectures when looking at cost is in the domain model

and persistence. In the stereotypical architecture an ORM was doing most of the heavy lifting in order to

persist the domain model within a Relational Database. This process introduces an Impedance Mismatch

between the domain model and the storage mechanism, the Impedance Mismatch as discussed in

“Events as a Storage Mechanism” can be highly costly both in productivity and the knowledge that

developers need to have.

The CQRS and Event Sourcing based architecture does not have an Impedance Mismatch between the

domain model and the storage mechanism on the Write side. The domain produces events, these same

events are all that is stored. The usage of events is all that the domain model knows about. There is

however an impedance mismatch in the read model. The Event Handlers must take events and update

the read model to its concept of what the events mean. The Impedance Mismatch here is between the

Events and the Relational Model.

The Impedance Mismatch between events and a Relational Model is much smaller than the mismatch

between an Object Model and a Relational Model and is much easier to bridge in simple ways. The

reason for this is that the Event Model does not have structure, it is representing actions that should be

taken within the Relational Model.

Looked at from this perspective, the two architectures have roughly the same amount of work being

done. Its not that its a lot more work or a lot less work; its just different work. The event based model

may be slightly more costly due to the need of definition of events but this cost is relatively low and it

also offers a smaller Impedance Mismatch to bridge which helps to make up for the cost. The event

based model also offers all of the benefits discussed in “Events” that also help to reduce the overall

initial cost of the creation of the events.

That said the CQRS and Event Sourcing model is actually less expensive in most cases!

Integration

Everything up until this point has been comparing the systems in isolation. This rarely happens within an

organization. More often than not organizations do only rely on systems but on systems of systems that

are integrated in some way.

With the stereotypical architecture no integration has yet been supported, except of course perhaps

integration through the database which is a well established anti-pattern for most systems. Integration

is viewed as an afterthought.

The integration must be custom written. Many organizations choose to build services over the top of

their model to allow for integration. Some of these services may be the same services that the clients

use but more often than not there is additional work that must be done in order to support integration.

A larger problem exists when the product is being delivered to many customers. It is the teams

responsibility to provide hooks for all of the customers and how they would like to integrate with the

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 53

system. This often becomes a very large and unwieldy piece of code, especially on systems that are

installed at hundreds or thousands of different clients all of which have different needs. The business

model here tends to be to bill the client for each piece of custom integration, this can be quite profitable

but it is a terrible model in terms of software.

With the CQRS and Event Sourcing based model, integration has been thought of since the very first use

case. The Read side needs to integrate and represent what is occurring on the Write Side, it is an

integration point. The integration model is “production ready” all throughout the initial building of the

system and it is being tested throughout by the integration with the Read Side.

The event based integration model is also known to be complete as all behaviors within the system have

events. If the system is capable of doing something, it is by definition automatically integrated. In some

circumstances it may be desirable to limit the publishing of events but it is a decision to limit what is

published as opposed to needing to write code to publish something.

The event based model is also by nature a push model that contains many advantages over the pull

model. If the stereotypical architecture desired a push based model then there would be large amounts

of work added to track events and ensure that they were synchronized with what the system recorded

in its own data model.

Differences in Work Habits

The two architectures also differ greatly in parallelization of work. In the stereotypical architecture work

is generally done in vertical slices. There are four common methodologies used.

 Data Centric: Start with database and working out.

 Client Centric: Start with client and work in.

 Façade/Contract First: Start with façade, then work back to data model then work finally

implement client

 Domain Centric: Start with the domain model, work out to the client then implement data

model

These methodologies all have a commonality; they tend to work in vertical slices. The same developers

will work on a feature through these steps. The same can be done with the CQRS and Event Sourcing

based architecture but it does not need to be. Consider a very high level view of the systems as

contained in Figure 3.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 54

Figure 28 High Level View of CQRS and Event Sourcing

The architecture can be viewed as three distinct decoupled areas. The first is the client; it consumes

DTOs and produces Commands. The second is the domain; it consumes commands and produces events.

The third is the Read Model; it consumes events and produces DTOs. The decoupled nature of these

three areas can be extremely valuable in terms of team characteristics.

Parallelization

It is relatively easy to have five to eight developers working on vertical slices at a given point without

running into too many conflicts in what is being done. This is because for a small number of developers

it is relatively easy to communicate what each developer is working on and to insure that there are few

if any areas where developers overlap. This problem becomes much more difficult as you scale up the

number of developers.

Instead of working in vertical slices the team can be working on three concurrent vertical slices, the

client, the domain, and the read model. This allows for a much better scaling of the number of

developers working on a project as since they are isolated from each other they cause less conflict when

making changes. It would be reasonable to nearly triple a team size without introducing a larger amount

of conflict due to not needing to introduce more communication for the developers. They still

communicate in the same way but they communicate about smaller decoupled pieces. This can be

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 55

extremely beneficial when time to market is important as it can drastically lower the amount of calendar

time to get a project done.

All Developers are not Created Equally

There, it has been said. On a team there are many different types of developers, some attributes to

consider in differences amongst developers include

 Technical Proficiency

 Knowledge of the Business Domain

 Cost

 Soft Skills

The points of decoupling are natural and support the specialization of teams in given areas. As an

example in the domain, the best candidate is a person who is high in cost but also has a large amount of

business knowledge, technical proficiency, and soft skills to talk with domain experts. When dealing with

the read model and the generation of DTOs this is simply not the case, it is a relatively straight forward

thing to do. The requirements are different which often leads to the next item.

Outsourcing

It is often not cost effective to keep low cost, medium skilled developers on a team. The overhead of

keeping employees in terms of salary costs as well as compliance with various governmental regulations

is often not worth the benefits of having the developers as employees. If a company is in a high cost

locale, the company can certainly get cheaper developers offshore. Whether offshore or onshore the

separation helps with successfully outsourcing part of a project.

Outsourced projects often fail because large amounts of communication are required between the

outsourcers and the local team or domain experts. With these communications many problems can

come up including time differences, cultural, and linguistic.

The Read Model as an example is an ideal area of the system to outsource. The contracts for the Read

Model as well of specifications for how it work are quite concrete and easily described. Little business

knowledge is needed and the technical proficiency requirements on most systems will be in the mid-

range.

The Domain Model on the other hand is something that will not work at all if outsourced. The

developers of the Domain Model need to have large amounts of communications with the domain

experts. The developers will also benefit greatly by having initial domain knowledge. These developers

are best kept locally within the team and should be highly valued.

http://cqrsinfo.com/

CQRS Documents by Greg Young

http://cqrsinfo.com Page 56

A company can save large amounts of capital by outsourcing this area of the system at a low risk, this

capital can then be reinvested in other, more important areas of the system. The directed use of capital

is very important in reaching a higher quality, lower cost system.

Specialization

A problem exists when working with vertical slices. The “best” developers, with best being defined as

most valuable, work with the domain. When working with a vertical slice though anecdotal evidence

suggests that they spend roughly 20-30% of their time in this endeavor.

With the secondary architecture, the team of developers working with the domain spend 80+% of their

time working with the domain and interacting with Domain Experts. The developers have no concern for

how the data model is persisted, or what data needs to be displayed to users. The developers focus on

the use cases of the system. They need only know Commands and Events.

This specialization frees them to engage in the far more important activities of reaching a good model

and a highly descriptive Ubiquitous Language with the Domain Experts. It also helps to optimize the time

of the Domain Experts as opposed to having them sit idly while the “technical” aspects of vertical slices

are being worked on.

Only Sometimes

There are many benefits offered through the separation but they do not need to be used. It is also quite

common to have a normal sized team still work in vertical slices. There are benefits in terms of risk

management amongst other things to having a small to medium sized team work in vertical slices of the

whole system.

The real benefit with the CQRS and Event Sourcing based architecture is that the option exists to bring it

into three distinct vertical slices with each having its own attributes optimized as opposed to using a one

size fits all mechanism

.

http://cqrsinfo.com/

	A Stereotypical Architecture
	Application Server
	Client Interaction
	Analysis of the Stereotypical Architecture
	Simplicity
	Tooling
	Domain Driven Design
	Scaling

	Summary

	Works Cited
	Task Based User Interface
	Commands
	User Interface

	Works Cited
	Command and Query Responsibility Segregation
	Origins
	Consistency
	Data Storage
	Scalability

	The Query Side
	The Command Side

	Events as a Storage Mechanism
	What is a Domain Event?
	Other Definitions and Discussion
	Events as a Mechanism for Storage
	There is no Delete
	Performance and Scalability
	Partitioning
	Saving Objects
	Loading Objects

	Rolling Snapshots
	Impedance Mismatch
	Business Value of the Event Log

	Works Cited
	Building an Event Storage
	Structure
	Operations
	Rolling Snapshots
	Event Storage as a Queue

	CQRS and Event Sourcing
	Cost Analysis
	Integration
	Differences in Work Habits
	Parallelization
	All Developers are not Created Equally
	Outsourcing
	Specialization
	Only Sometimes

